1st Edition Published: April 2023

SPACE CYBERSECURITY

Market Intelligence Report Presentation

Confidential

Copyright © 2023 CyberInflight - All rights reserved.

www.cyberinflight.com

CyberInflight

A strategic report on Space Cybersecurity

Database of

265

Space-

cybersecurity

stakeholders

Space Cybersecurity Market Intelligence report

- Strategic approach
- Interview campaign (~30 interviewees from the entire value chain)

30

Interviews

conducted

- Market outlook
- Sector trends and dynamics
- Strategic analysis and forecast

8

chapters

- Stakeholders' profile
- Regulatory landscape
- Threat intelligence

155

Pages

Database of

ΔΔ

Space-

cybersecurit

y contracts

OUR MAIN

STRATEGIC

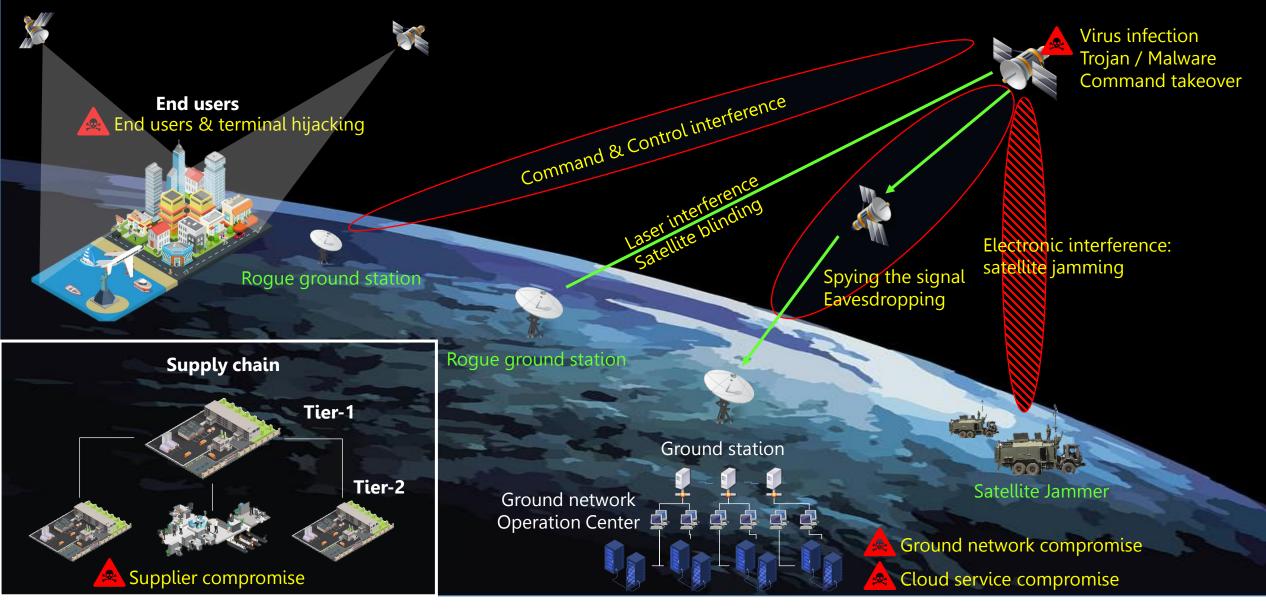
REPORT

Released in April 2023 : CyberInflight strategic report is a **unique resource on the space cybersecurity domain** consolidating all necessary information to better comprehend the market and make insightful decision making. CyberInflight is proud to be at the forefront of this domain and one of the **only market intelligence company** to have consolidated such amount of information in a single document.

Database of

130

cyberattacks


Research Report's Table of content

Executive Summary	1	Examples of regional space threat players	40	Space Overlay and NIST SP 800-53 Rev. 5	76	Space Software & Operating System (2/4)
Acronym Table	2	CHAPTER III. SPACE CYBERSECURITY STAKEHOLDERS	41	Space Overlay overview	77	Space Software & Operating System (2/4)
Acronym Table	3			NIST 8323 overview	78	Space Software & Operating System (3/ 1)
Table of content	4	Introduction & Methodology	42	NIST 8270 overview	79	Quantum in a nutshell
CHAPTER I. INTRODUCTION	5	List of universities involved in space cybersecurity	43	ECSS (European Cooperation for Space Standardization)	80	Quantum technologies (1/2)
Introduction to the space economy	6	List of institutions involved in space cybersecurity – Europe region	44	& BSI (Federal Office for Information Security)	80	Quantum technologies (2/2)
The booming economy of space data	7	List of institutions involved in space cybersecurity –		CCSDS: Introduction	81	Quantum security (1/2)
More assets in space: a broader attack surface	/ Q	North America region	45	CCSDS: SEA-SEC	82	Quantum security (2/2)
Observed trends in the space sector	a	List of institutions involved in space cybersecurity –	46	NIST 8401 overview	83	Quantum supremacy (1/3)
New Space and Innovation	10	APAC region & others	40	CNSSP-12 & SPD-5	84	Quantum supremacy (2/3)
Cybersecurity principles	11	List of corporate actors involved in space cybersecurity –	47	Tallin Manual 2.0 & Budapest convention	85	Quantum supremacy (3/3)
Cybersecurity principles for space systems	12	by number of employees List of corporate actors involved in space cybersecurity –		NIS v2	86	Quantum projects
Increasing recognition of space cybersecurity	13	by number of employees	48	IA-PRE	87	CHAPTER VII. CASE STUDIES
Lack of skilled workforce : a major challenge	14	Corporate space cybersecurity actors (1/3)	49	HSN & Space Policy	88	Cybersecurity at NASA (1/5)
The global cybersecurity market	14	Corporate space cybersecurity actors (2/3)	50	Recognizing Space as a "Critical Infrastructure"	89	NASA: Definition of the attack surface (2/5)
Viasat : a turning point in space cybersecurity	16	Corporate space cybersecurity actors (3/3)	51	Common Criteria & Other guidance	90	NASA: General & Cybersecurity spending (3/5)
Evolution of cyberattacks against the space sector	17	The soar of Space Forces	52	Introduction to EXPORT-CONTROL	91	NASA: SOC cybersecurity spending (4/5)
A new battlefield (1/2)	18	Space ISAC: a keystone for information sharing	53	EU and US EXPORT-CONTROL	92	NASA: OIG Recommendations (5/5)
A new battlefield (2/2)	19	Space ISAC overview	54	US EXPORT-CONTROL overview	93	Starlink: an efficient DevSecOps approach
CHAPTER II. THREAT INTEL. & CYBERATTACKS		Innovative space-cyber actors ~ 20	55	Takeaways on Export-Control from a satellite	94	Russia: a master in Electronic Warfare
EXAMPLES	20	GSaaS Ground Segment/Station as a Service	56	manufacturer	95	China: Space Cyber activities
Introduction	21	Company profile: Leaf Space	57	CMMC: Introduction	95 96	US Space Force (USSF) cybersecurity approach (1/2)
Overview of cyberattacks on space ecosystem	22	Company profile: CGI	58	CMMC: CMMC Levels and Domains	96 97	US Space Force (USSF) cybersecurity approach (2/2)
Case 1: Eavesdropping Athena-Fidus communications	23	Company profile: RHEA-GROUP	59	CMMC: Processes and Practices	97 98	The cybersecurity of rocket launchers
Case 2: ROSAT satellite attack allegations	24	Mapping of corporate actors	60	CMMC: Rollout phases		U.S. Defense Industrial Base (1/2)
Case 3: Interfering with US satellites (Landsat-7, Terra	25	Mapping of institutional actors	61	CHAPTER VI. TECHNOLOGY	99	U.S. Defense Industrial Base (2/2)
EOS)		Mapping of academic database	62	Executive Summary	100	DIBs around the world
Case 4: Jamming satellite signals	26	CHAPTER IV. SPACE CYBERSECURITY ECONOMY	63	A word on Satellite Platforms (1/2)	101	CHAPTER VIII. MISCELLANEOUS / CONTRACTS
Case 5: Intrusion of IT systems	27			A word on Satellite Platforms (2/2)	102	
Case 6: Takeover and spoofing	28	Overview of the cybersecurity budget evolution	64 65	SWaP (Size, Weight and Power) (1/2)	103	Space conferences dedicated to space cybersecurity
Case 7: Software bugs	29	Estimated budget evolution (global/IT/cyber)	66	SWaP (Size, Weight and Power) (2/2)	104	Overview of space cybersecurity conferences
Case 8: Supply chain compromise	30	The concept of "cybersecurity debt"		The evolution of hardware technology in space (1/3)	105	Overview of the CYSAT conference 2022 (2nd edition)
Case 9: NASA cybersecurity breach	31	Heterogenous cybersecurity investment levels	67 69	The evolution of hardware technology in space (2/3)	106	Cyber-insurance: Introduction (1/2)
Miscellaneous: NASA incident list	32	Forecast of Cybersecurity budget	68 60	The evolution of hardware technology in space (3/3)	107	Cyber-insurance: Introduction (2/2)
Overview of the recent Viasat/KA-SAT cyberattack (1/3)	33	Forecast of budget evolution (global/IT/cyber)	69 70	Other cybersecurity technologies for space systems	108	Cyber & Space insurance
Overview of the recent Viasat/KA-SAT cyberattack (2/3)	34	Forecast of the cybersecurity debt	70 71	Cryptography tradeoff for space applications	109	Cyber-insurance: Chronology of cyber-insurance
Overview of the recent Viasat/KA-SAT case (3/3)	35	Overview of significant space cybersecurity contracts		Ground segment security – Introduction	110	Cyber-insurance: Defining the cyber-risk
Demystifying cyberattacks in space	36	CHAPTER V. REGULATORY LANDSCAPE	72	Ground segment security – Overview	111	Cyber-insurance: Stakeholders and their influence Cyber-Insurance: conventional VS specific cyber-
Geopolitics and Space: the growth of cyber threats	37	Executive summary	73	Ground Segment Security – Example of cyberattacks	112	contract
Space-cyber warfare	38	Most relevant guidance for cyber-space stakeholders	74	Cloud security in space	113	contract
The media aspect	39	NIST overview of applicable guidance to space value	75	Space Software & Operating System (1/4)	114	
		chain	-			

Overview of cyberattacks on space ecosystem (excerpt)

Market economics (excerpt)

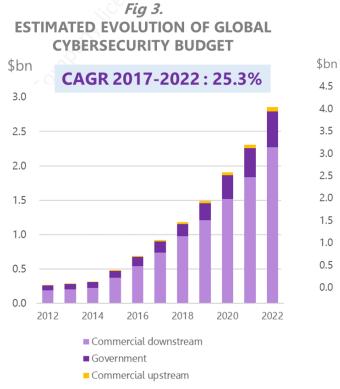
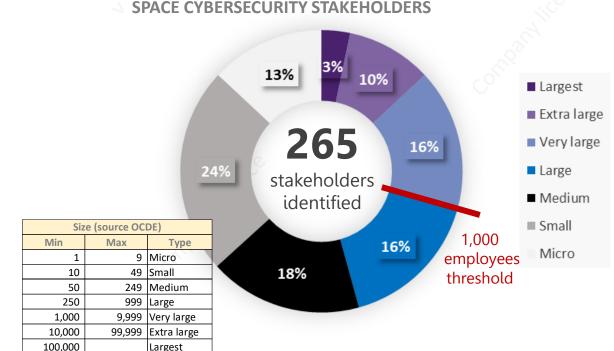
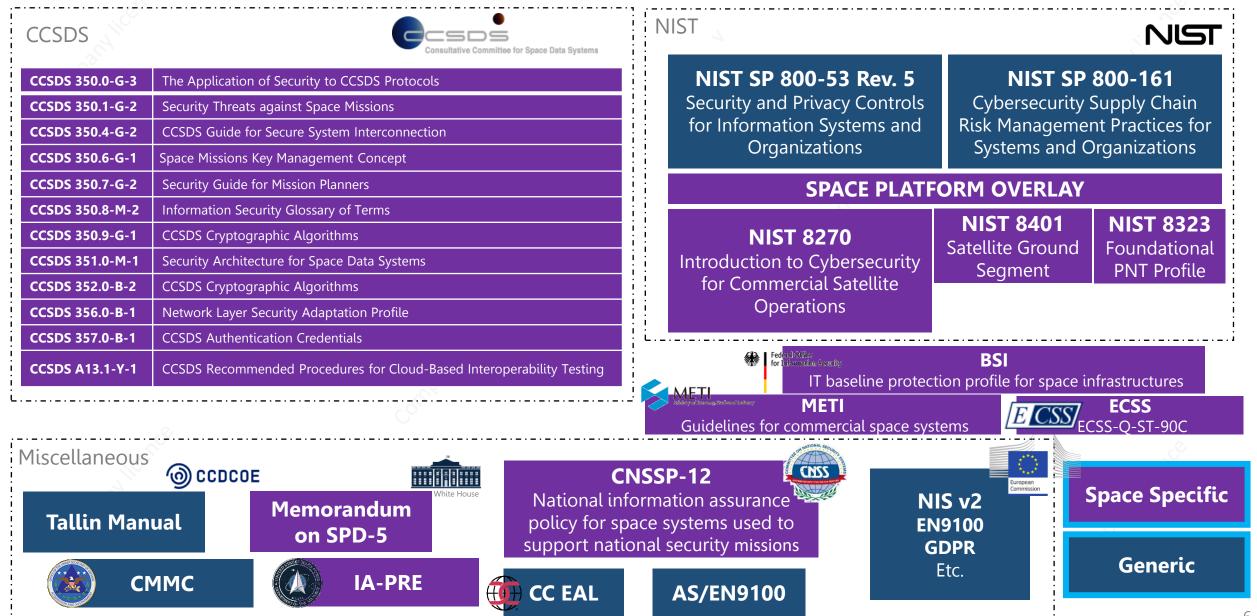



Fig. 4 ESTIMATED RECOMMENDED VERSUS ACTUAL CYBERSECURITY BUDGET

Space cybersecurity market seems to follow an outstanding **CAGR of 25%** in the last 5 years Space cybersecurity market _ seems to **accumulate a** _ **technical debt every year**

(Source CyberInflight, see full Space Cybersecurity report)

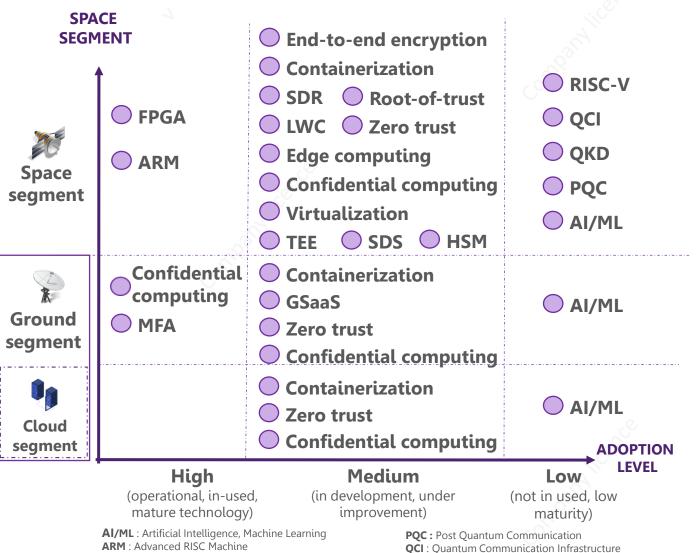


SPACE CYBER STAKEHOLDERS MARKET TRENDS

- **Fragmented** but limited market (70% of companies are <1,000)
- Legacy stakeholders shifting toward space cybersecurity
- More **new entrants with innovative and expected space/cyber solutions**
- Growing competition
- Growing **tension** on cybersecurity staff (and salaries)
- Increasing business **opportunities**

Most relevant guidance for cyber-space stakeholders (excerpt)

Technology Executive Summary (excerpt)



The **ever-increasing demand for data** and the growing dependency on space applications is pushing the need for processing more data on board and to send them to the ground. A new set of technologies is being developed allowing for higher performance, increased throughput, and secure communications. The improvement of existing technologies (RISC, ARM, FPGA), the creation or the adaption of new ones to space applications (lightweight cryptography, confidential computina, containerization, quantum) the shift to new business models (such as GSaaS, and as-a-service models in general) are a set of new challenges to be overcome not only to meet the growing demand for space data but also to reliably secure these services in front of an expanding threat landscape.

Embedding more technologies within the spacecraft implies meeting current and future operational and environmental constraints. It requires additional performance, power, weight or size (the SWaP tradeoff). The **soar of COTS** has pushed the use of technologies which are well-used within traditional IT applications such as containerization (virtualization, Kubernetes, Docker). Trust is implemented at different level from hardware (root-of-trust) to software (LWC or confidential computing). The ground segment is also sustaining significant transformation - becoming more and more cloud-oriented.

Future technologies such as quantum or artificial intelligence or machine learning may be seen as disruptors when reaching a higher maturity level.

Cybersecurity technologies are evolving between current and future requirements mainly driven by the rapid evolution and growing interest for space by the cyber threat landscape.

SPACE CYBERSECURITY TECHNOLOGY EXAMPLES & THEIR MATURITY LEVEL

Copyright CyberInflight

FPGA : Field-programmable gate array

HSM : Hardware Security Module

LWC : Lightweight Cryptography

MFA : Multi-factor authentication

QKD : Quantum Key Distribution

RISC : Reduced Instruction Set Computer

Space Cybersecurity Market Intelligence report supporting databases

4 MAIN DATABASES

173 cyberattacks reported publicly from 1977 to 2023

380 academic, corporate and institution actors of all size involved in the field of space cybersecurity

85 contracts from five regions of the world (AsiaPACific, EUrope, Meadle East/North Africa and North America)

Estimation of space cybersecurity budgets from 2018 to 2020

Cyberattack database Updated on June 1st 2023

Actors database Updated on June 1st 2023

Contract database Updated on June 1st 2023

Space cyber Economy database Updated on May 2023

1st Edition

Published: April 2023

Contact us at: research@cyberinflight.com

Report summary

- Market outlook
- Sector trends and dynamics
- Strategic analysis and forecast
- Stakeholders' profile
- Regulatory landscape
- Threat intelligence